Standard library header <memory>
From cppreference.com
                    
                                        
                    
                    
                                                            
                    This header is part of the dynamic memory management library.
Contents | 
[edit] Classes
 Smart pointers categories | 
|
|    (C++11) 
 | 
   smart pointer with unique object ownership semantics   (class template)  | 
|    (C++11) 
 | 
   smart pointer with shared object ownership semantics   (class template)  | 
|    (C++11) 
 | 
   weak reference to an object managed by std::shared_ptr   (class template)  | 
|    (deprecated) 
 | 
   smart pointer with strict object ownership semantics   (class template)  | 
 Smart pointers helper classes | 
|
|    (C++11) 
 | 
   provides mixed-type owner-based ordering of shared and weak pointers   (class template)  | 
|    (C++11) 
 | 
   allows an object to create a shared_ptr referring to itself  (class template)  | 
|    (C++11) 
 | 
   exception thrown when accessing a weak_ptr which refers to already destroyed object  (class)  | 
|    (C++11) 
 | 
   default deleter for unique_ptr  (class template)  | 
 Allocators | 
|
|    the default allocator   (class template)  | 
|
|    (C++11) 
 | 
   provides information about allocator types   (class template)  | 
|    (C++11) 
 | 
   tag type used to select allocator-aware constructor overloads  (class)  | 
|    (C++11) 
 | 
   an object of type std::allocator_arg_t used to select allocator-aware constructors  (constant)  | 
|    (C++11) 
 | 
   checks if the specified type supports uses-allocator construction   (class template)  | 
 Other | 
|
|    (C++11) 
 | 
   lists pointer safety models   (class)  | 
|    (C++11) 
 | 
   provides information about pointer-like types   (class template)  | 
|    (C++11) 
 | 
   hash support for std::shared_ptr   (class template specialization)  | 
|    (C++11) 
 | 
   hash support for std::unique_ptr   (class template specialization)  | 
 Forward declaration | 
|
|   Defined in header  
<functional>  | 
|
|    (C++11) 
 | 
   hash function object   (class template)  | 
 Constants | 
|
|    (C++11) 
 | 
   an object of type std::allocator_arg_t used to select allocator-aware constructors  (constant)  | 
[edit] Functions
 Uninitialized storage | 
|
|    copies a range of objects to an uninitialized area of memory  (function template)  | 
|
|    (C++11) 
 | 
   copies a number of objects to an uninitialized area of memory   (function template)  | 
|    copies an object to an uninitialized area of memory  (function template)  | 
|
|    copies an object to an uninitialized area of memory  (function template)  | 
|
|    an iterator that allows standard algorithms to store results in uninitialized memory  (class template)  | 
|
|    obtains uninitialized storage   (function template)  | 
|
|    frees uninitialized storage   (function template)  | 
|
 Garbage collector support | 
|
|    (C++11) 
 | 
   declares that an object can not be recycled    (function)  | 
|    (C++11) 
 | 
   declares that an object can be recycled   (function template)  | 
|    (C++11) 
 | 
   declares that a memory area does not contain traceable pointers   (function)  | 
|    (C++11) 
 | 
   cancels the effect of std::declare_no_pointers   (function)  | 
|    (C++11) 
 | 
   returns the current pointer safety model   (function)  | 
 Miscellaneous | 
|
|    (C++11) 
 | 
   obtains actual address of an object, even if the & operator is overloaded   (function template)  | 
|    (C++11) 
 | 
   aligns a pointer in a buffer   (function)  | 
 Smart pointer non-member operations | 
|
|    creates a shared pointer that manages a new object  (function template)  | 
|
|    creates a shared pointer that manages a new object allocated using an allocator  (function template)  | 
|
|    applies static_cast, dynamic_cast or const_cast to the type of the managed object  (function template)  | 
|
|    returns the deleter of specified type, if owned   (function template)  | 
|
   compares with another shared_ptr or with nullptr  (function template)  | 
|
|    outputs the value of the managed pointer to an output stream  (function template)  | 
|
|    (C++11) 
 | 
   specializes the std::swap algorithm   (function template)  | 
|    specializes atomic operations   (function template)  | 
   compares to another unique_ptr or with nullptr  (function template)  | 
|
|    (C++11) 
 | 
   specializes the std::swap algorithm   (function template)  | 
|    (C++11) 
 | 
   specializes the std::swap algorithm   (function template)  | 
 Allocator non-member operations | 
|
|   compares two allocator instances  (public member function of std::allocator) 
 | 
|
|   compares two scoped_allocator_adaptor instances  (public member function of std::scoped_allocator_adaptor) 
 | 
|
[edit] Synopsis
namespace std { // pointer traits template <class Ptr> struct pointer_traits; template <class T> struct pointer_traits<T*>; // pointer safety enum class pointer_safety { relaxed, preferred, strict }; void declare_reachable(void *p); template <class T> T *undeclare_reachable(T *p); void declare_no_pointers(char *p, size_t n); void undeclare_no_pointers(char *p, size_t n); pointer_safety get_pointer_safety() noexcept; // pointer alignment function void *align(std::size_t alignment, std::size_t size, void *&ptr, std::size_t& space); // allocator argument tag struct allocator_arg_t { }; constexpr allocator_arg_t allocator_arg = allocator_arg_t(); // uses_allocator template <class T, class Alloc> struct uses_allocator; // allocator traits template <class Alloc> struct allocator_traits; // the default allocator: template <class T> class allocator; template <> class allocator<void>; template <class T, class U> bool operator==(const allocator<T>&, const allocator<U>&) noexcept; template <class T, class U> bool operator!=(const allocator<T>&, const allocator<U>&) noexcept; // raw storage iterator: template <class OutputIterator, class T> class raw_storage_iterator; // temporary buffers: template <class T> pair<T*,ptrdiff_t> get_temporary_buffer(ptrdiff_t n) noexcept; template <class T> void return_temporary_buffer(T* p); // specialized algorithms: template <class T> T* addressof(T& r) noexcept; template <class InputIterator, class ForwardIterator> ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, ForwardIterator result); template <class InputIterator, class Size, class ForwardIterator> ForwardIterator uninitialized_copy_n(InputIterator first, Size n, ForwardIterator result); template <class ForwardIterator, class T> void uninitialized_fill(ForwardIterator first, ForwardIterator last, const T& x); template <class ForwardIterator, class Size, class T> ForwardIterator uninitialized_fill_n(ForwardIterator first, Size n, const T& x); // class template unique_ptr: template <class T> class default_delete; template <class T> class default_delete<T[]>; template <class T, class D = default_delete<T>> class unique_ptr; template <class T, class D> class unique_ptr<T[], D>; template <class T1, class D1, class T2, class D2> bool operator==(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator!=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator<=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T1, class D1, class T2, class D2> bool operator>=(const unique_ptr<T1, D1>& x, const unique_ptr<T2, D2>& y); template <class T, class D> bool operator==(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator==(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator!=(const unique_ptr<T, D>& x, nullptr_t) noexcept; template <class T, class D> bool operator!=(nullptr_t, const unique_ptr<T, D>& y) noexcept; template <class T, class D> bool operator<(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator<=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator<=(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>(nullptr_t, const unique_ptr<T, D>& y); template <class T, class D> bool operator>=(const unique_ptr<T, D>& x, nullptr_t); template <class T, class D> bool operator>=(nullptr_t, const unique_ptr<T, D>& y); // class bad_weak_ptr: class bad_weak_ptr; // class template shared_ptr: template<class T> class shared_ptr; // shared_ptr comparisons: template<class T, class U> bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator>(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator<=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template<class T, class U> bool operator>=(shared_ptr<T> const& a, shared_ptr<U> const& b) noexcept; template <class T> bool operator==(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator==(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator!=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator!=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator<=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator<=(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>(nullptr_t, const shared_ptr<T>& y) noexcept; template <class T> bool operator>=(const shared_ptr<T>& x, nullptr_t) noexcept; template <class T> bool operator>=(nullptr_t, const shared_ptr<T>& y) noexcept; // shared_ptr specialized algorithms: template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b) noexcept; // shared_ptr casts: template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r) noexcept; template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r) noexcept; template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r) noexcept; // shared_ptr get_deleter: template<class D, class T> D* get_deleter(shared_ptr<T> const& p) noexcept; // shared_ptr I/O: template<class E, class T, class Y> basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p); // class template weak_ptr: template<class T> class weak_ptr; // weak_ptr specialized algorithms: template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b) noexcept; // class template owner_less: template<class T> class owner_less; // class template enable_shared_from_this: template<class T> class enable_shared_from_this; // shared_ptr atomic access: template<class T> bool atomic_is_lock_free(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load(const shared_ptr<T>* p); template<class T> shared_ptr<T> atomic_load_explicit(const shared_ptr<T>* p, memory_order mo); template<class T> void atomic_store(shared_ptr<T>* p, shared_ptr<T> r); template<class T> void atomic_store_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> shared_ptr<T> atomic_exchange(shared_ptr<T>* p, shared_ptr<T> r); template<class T> shared_ptr<T> atomic_exchange_explicit(shared_ptr<T>* p, shared_ptr<T> r, memory_order mo); template<class T> bool atomic_compare_exchange_weak( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_strong( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w); template<class T> bool atomic_compare_exchange_weak_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); template<class T> bool atomic_compare_exchange_strong_explicit( shared_ptr<T>* p, shared_ptr<T>* v, shared_ptr<T> w, memory_order success, memory_order failure); // hash support template <class T> struct hash; template <class T, class D> struct hash<unique_ptr<T, D> >; template <class T> struct hash<shared_ptr<T> >; // auto_ptr (deprecated) template <class X> class auto_ptr; }
| This section is incomplete Reason: Class synopses  |